|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Full Scoreboard ยป |
Columbus Blue Jackets 22-14-1, 45pts · 5th in Eastern Conference |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Player | # | POS | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | C/LW | 100.00 | 59 | 4 | 94 | 96 | 68 | 97 | 97 | 95 | 89 | 99 | 98 | 54 | 53 | 77 | 77 | 66 | 70 | 82 | 26 | 8,400,000$/1yrs | |||
![]() | 0 | LW | 100.00 | 62 | 6 | 87 | 85 | 71 | 94 | 93 | 96 | 53 | 99 | 91 | 50 | 65 | 76 | 77 | 77 | 70 | 79 | 30 | 9,000,000$/1yrs | |||
![]() | 0 | C | 100.00 | 49 | 1 | 94 | 91 | 76 | 92 | 95 | 90 | 79 | 94 | 80 | 44 | 84 | 71 | 74 | 77 | 70 | 76 | 31 | 5,250,000$/1yrs | |||
![]() | 0 | C/LW | 99.00 | 57 | 27 | 99 | 91 | 71 | 75 | 86 | 90 | 25 | 84 | 95 | 57 | 25 | 57 | 57 | 73 | 70 | 75 | 26 | 9,000,000$/1yrs | |||
![]() | 0 | LW/RW | 100.00 | 29 | 1 | 99 | 87 | 66 | 81 | 99 | 83 | 30 | 95 | 79 | 54 | 25 | 81 | 83 | 63 | 70 | 74 | 29 | 4,500,000$/1yrs | |||
![]() | 0 | C/LW | 100.00 | 67 | 22 | 87 | 83 | 82 | 82 | 97 | 64 | 90 | 63 | 69 | 77 | 25 | 71 | 72 | 66 | 70 | 71 | 29 | 2,250,000$/2yrs | |||
![]() | 0 | C | 100.00 | 49 | 25 | 89 | 77 | 68 | 85 | 95 | 85 | 73 | 78 | 77 | 55 | 80 | 43 | 43 | 92 | 70 | 70 | 20 | 925,000$/2yrs | |||
![]() | 0 | RW | 100.00 | 62 | 15 | 99 | 85 | 85 | 75 | 92 | 80 | 28 | 68 | 76 | 47 | 25 | 73 | 73 | 55 | 70 | 70 | 26 | 1,000,000$/2yrs | |||
![]() | 0 | C/RW | 100.00 | 65 | 6 | 99 | 84 | 84 | 82 | 90 | 68 | 79 | 62 | 70 | 57 | 63 | 77 | 78 | 63 | 70 | 69 | 31 | 1,250,000$/2yrs | |||
![]() | 0 | C/LW | 100.00 | 70 | 35 | 68 | 79 | 71 | 80 | 95 | 78 | 71 | 81 | 63 | 52 | 57 | 53 | 53 | 80 | 70 | 68 | 22 | 3,100,000$/4yrs | |||
![]() | 0 | LW | 100.00 | 73 | 33 | 71 | 77 | 82 | 79 | 95 | 75 | 67 | 59 | 78 | 58 | 77 | 53 | 53 | 82 | 70 | 68 | 22 | 1,500,000$/4yrs | |||
![]() | 0 | C | 100.00 | 41 | 1 | 99 | 89 | 74 | 74 | 67 | 73 | 97 | 74 | 65 | 52 | 25 | 80 | 80 | 48 | 54 | 68 | 27 | 1,500,000$/2yrs | |||
![]() | 0 | D | 99.00 | 65 | 5 | 89 | 87 | 72 | 99 | 89 | 89 | 25 | 80 | 62 | 85 | 81 | 76 | 83 | 78 | 70 | 78 | 36 | 7,000,000$/4yrs | |||
![]() | 55 | D | 100.00 | 75 | 12 | 90 | 88 | 77 | 90 | 90 | 78 | 25 | 80 | 54 | 74 | 75 | 86 | 86 | 52 | 70 | 76 | 28 | 4,500,000$/4yrs | |||
![]() | 0 | D | 100.00 | 86 | 39 | 79 | 83 | 74 | 78 | 90 | 63 | 25 | 63 | 48 | 86 | 25 | 71 | 71 | 57 | 66 | 74 | 29 | 4,000,000$/2yrs | |||
![]() | 0 | D | 100.00 | 68 | 15 | 86 | 74 | 72 | 99 | 76 | 62 | 25 | 64 | 50 | 79 | 25 | 74 | 75 | 64 | 70 | 71 | 33 | 1,750,000$/3yrs | |||
![]() | 0 | D | 100.00 | 65 | 15 | 81 | 83 | 79 | 86 | 75 | 65 | 25 | 56 | 48 | 82 | 25 | 75 | 76 | 55 | 70 | 71 | 31 | 2,275,000$/3yrs | |||
![]() | 0 | D | 100.00 | 33 | 1 | 99 | 83 | 73 | 92 | 67 | 72 | 25 | 72 | 55 | 79 | 25 | 71 | 72 | 49 | 70 | 69 | 27 | 2,250,000$/3yrs | |||
Scratches | ||||||||||||||||||||||||||
![]() | 0 | LW/RW | 100.00 | 81 | 34 | 77 | 82 | 73 | 81 | 64 | 83 | 30 | 79 | 87 | 69 | 25 | 69 | 69 | 61 | 52 | 73 | 28 | 4,750,000$/3yrs | |||
TEAM AVERAGE | 99.89 | 61 | 16 | 89 | 84 | 75 | 85 | 87 | 78 | 51 | 76 | 71 | 64 | 47 | 70 | 71 | 66 | 68 | 73 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Goalie | # | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | AGE | CONTRACT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | 98.00 | 87 | 89 | 99 | 82 | 89 | 98 | 93 | 97 | 97 | 86 | 92 | 80 | 81 | 68 | 79 | 87 | 29 | 7,500,000$/1yrs |
![]() | 0 | 100.00 | 71 | 93 | 78 | 82 | 77 | 81 | 74 | 85 | 73 | 63 | 63 | 53 | 53 | 79 | 79 | 73 | 24 | 2,500,000$/4yrs |
Scratches | ||||||||||||||||||||
TEAM AVERAGE | 99.00 | 79 | 91 | 89 | 82 | 83 | 90 | 84 | 91 | 85 | 75 | 78 | 67 | 67 | 74 | 79 | 80 |
Coaches Name | PH | DF | OF | PD | EX | LD | PO | CNT | Age | Contract | Salary |
---|---|---|---|---|---|---|---|---|---|---|---|
John Tortorella | 70 | 84 | 85 | 99 | 99 | 99 | 75 | USA | 67 | 5 | 2,500,000$ |
General Manager | Danielle Cook |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Player Name | Team Name | # | POS | GP | G | A | P | +/- | PIM | PIM5 | HIT | SHT | OSB | OSM | SHT% | SB | AMG | PPG | PPA | PPP | PPM | PKG | PKA | PKP | PKM | GW | GT | FO% | FOT | GA | TA | EG | HT | P/20 | PSG | PSS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Sebastian Aho | 0 | C/LW | 37 | 16 | 28 | 44 | -1 | 0 | 0 | 72 | 133 | 38 | 94 | 12.03% | 9 | 22.25 | 2 | 13 | 15 | 107 | 1 | 0 | 1 | 85 | 4 | 0 | 56.41% | 936 | 36 | 13 | 0 | 0 | 1.07 | 0 | 1 | |
2 | Jonathan Huberdeau | 0 | LW | 37 | 15 | 18 | 33 | 6 | 18 | 0 | 43 | 108 | 33 | 60 | 13.89% | 10 | 16.18 | 4 | 7 | 11 | 99 | 0 | 0 | 0 | 3 | 2 | 0 | 26.47% | 34 | 29 | 2 | 1 | 1 | 1.10 | 0 | 0 | |
3 | Kirill Kaprizov | 0 | C/LW | 37 | 17 | 15 | 32 | -2 | 2 | 0 | 50 | 161 | 47 | 92 | 10.56% | 12 | 22.06 | 5 | 6 | 11 | 106 | 0 | 1 | 1 | 78 | 1 | 2 | 21.15% | 52 | 40 | 13 | 0 | 2 | 0.78 | 0 | 0 | |
4 | Evgeny Kuznetsov | 0 | C | 37 | 9 | 18 | 27 | 4 | 0 | 0 | 25 | 113 | 38 | 57 | 7.96% | 10 | 18.53 | 5 | 4 | 9 | 100 | 0 | 0 | 0 | 83 | 3 | 2 | 52.62% | 686 | 26 | 13 | 0 | 0 | 0.79 | 0 | 1 | |
5 | Kris Letang | 0 | D | 37 | 7 | 17 | 24 | 2 | 24 | 0 | 43 | 61 | 31 | 22 | 11.48% | 66 | 25.95 | 2 | 5 | 7 | 107 | 0 | 0 | 0 | 78 | 1 | 1 | 0.00% | 0 | 18 | 52 | 1 | 0 | 0.50 | 0 | 0 | |
6 | Radek Faksa | 0 | C/LW | 37 | 10 | 13 | 23 | 7 | 14 | 0 | 66 | 67 | 19 | 44 | 14.93% | 28 | 22.41 | 1 | 4 | 5 | 98 | 0 | 0 | 0 | 73 | 4 | 0 | 63.89% | 108 | 10 | 18 | 0 | 0 | 0.55 | 0 | 0 | |
7 | Teuvo Teravainen | 0 | LW/RW | 37 | 5 | 10 | 15 | -5 | 2 | 0 | 11 | 93 | 29 | 47 | 5.38% | 8 | 13.61 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 28.66% | 307 | 16 | 13 | 0 | 0 | 0.60 | 0 | 0 | |
8 | Christian Fischer | 0 | RW | 37 | 7 | 4 | 11 | -5 | 2 | 0 | 38 | 58 | 19 | 25 | 12.07% | 12 | 13.43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 33.33% | 18 | 7 | 8 | 0 | 0 | 0.44 | 0 | 0 | |
9 | Wyatt Johnston | 0 | C | 37 | 5 | 4 | 9 | 1 | 32 | 0 | 40 | 36 | 9 | 21 | 13.89% | 8 | 19.15 | 5 | 2 | 7 | 107 | 0 | 0 | 0 | 4 | 2 | 1 | 32.69% | 52 | 6 | 6 | 0 | 0 | 0.25 | 0 | 1 | |
10 | Jake McCabe | 0 | D | 37 | 1 | 7 | 8 | 7 | 49 | 5 | 43 | 25 | 13 | 14 | 4.00% | 44 | 16.94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65 | 0 | 0 | 0.00% | 0 | 2 | 24 | 0 | 0 | 0.26 | 0 | 0 | |
11 | Danny DeKeyser | 0 | D | 37 | 1 | 6 | 7 | 6 | 30 | 0 | 47 | 37 | 9 | 7 | 2.70% | 47 | 23.05 | 1 | 2 | 3 | 107 | 0 | 0 | 0 | 87 | 0 | 0 | 0.00% | 0 | 4 | 32 | 0 | 0 | 0.16 | 0 | 1 | |
12 | Tyler Bertuzzi | 0 | LW/RW | 26 | 0 | 6 | 6 | -5 | 20 | 0 | 54 | 63 | 13 | 42 | 0.00% | 15 | 14.71 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 10 | 0 | 0 | 22.22% | 9 | 11 | 6 | 0 | 0 | 0.31 | 0 | 1 | |
13 | Jonathon Merrill | 0 | D | 37 | 2 | 4 | 6 | -13 | 14 | 0 | 44 | 39 | 11 | 14 | 5.13% | 38 | 20.04 | 1 | 0 | 1 | 102 | 0 | 0 | 0 | 18 | 0 | 0 | 0.00% | 0 | 2 | 20 | 0 | 0 | 0.16 | 0 | 0 | |
14 | Rasmus Ristolainen | 55 | D | 37 | 1 | 4 | 5 | 8 | 6 | 0 | 42 | 22 | 8 | 4 | 4.55% | 37 | 15.38 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 7 | 0 | 1 | 0.00% | 0 | 4 | 20 | 0 | 0 | 0.18 | 0 | 0 | |
15 | Travis Sanheim | 0 | D | 37 | 0 | 4 | 4 | -12 | 0 | 0 | 7 | 28 | 12 | 11 | 0.00% | 43 | 19.06 | 0 | 4 | 4 | 101 | 0 | 0 | 0 | 90 | 0 | 0 | 0.00% | 0 | 3 | 19 | 0 | 0 | 0.11 | 0 | 0 | |
16 | Peyton Krebs | 0 | C/LW | 37 | 2 | 1 | 3 | -1 | 12 | 0 | 25 | 31 | 8 | 12 | 6.45% | 1 | 6.47 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 60.00% | 5 | 4 | 5 | 0 | 0 | 0.25 | 0 | 0 | |
17 | Christian Dvorak | 0 | C | 25 | 2 | 1 | 3 | -1 | 0 | 0 | 3 | 11 | 3 | 9 | 18.18% | 5 | 6.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 28.57% | 7 | 2 | 2 | 0 | 0 | 0.40 | 0 | 0 | |
18 | Nick Bjugstad | 0 | C/RW | 37 | 1 | 1 | 2 | 0 | 0 | 0 | 14 | 6 | 4 | 4 | 16.67% | 3 | 6.69 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 40.00% | 5 | 7 | 4 | 0 | 0 | 0.16 | 0 | 0 | |
19 | Nolan Foote | 0 | LW | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | |
Team Total or Average | 680 | 101 | 161 | 262 | -4 | 225 | 5 | 667 | 1092 | 344 | 579 | 9.25% | 396 | 16.09 | 26 | 47 | 73 | 1050 | 1 | 1 | 2 | 690 | 22 | 8 | 49.48% | 2219 | 227 | 270 | 2 | 3 | 0.48 | 0 | 5 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Goalie Name | Team Name | GP | W | L | OTL | PCT | GAA | MP | PIM | SO | GA | SA | SAR | A | EG | PS % | PSA | ST | BG | S1 | S2 | S3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Andrei Vasilevskiy | Blue Jackets | 37 | 22 | 14 | 1 | 0.921 | 2.36 | 2190 | 4 | 1 | 86 | 1090 | 443 | 1 | 1 | 0.667 | 3 | 37 | 0 | 6 | 4 | 4 |
2 | Ukko-Pekka Luukkonen | Blue Jackets | 1 | 0 | 0 | 0 | 0.941 | 1.58 | 38 | 0 | 0 | 1 | 17 | 6 | 0 | 0 | 0.000 | 0 | 0 | 37 | 0 | 0 | 0 |
Team Total or Average | 38 | 22 | 14 | 1 | 0.921 | 2.34 | 2229 | 4 | 1 | 87 | 1107 | 449 | 1 | 1 | 0.667 | 3 | 37 | 37 | 6 | 4 | 4 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | VS Team | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT | GF% | SH% | SV% | PDO | PDOBRK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 0 | 2 | 0.500 | 5 | 10 | 15 | 0 | 0 | 0 | 2 | 3 | 0 | 63 | 14 | 23 | 26 | 0 | 61 | 24 | 16 | 36 | 6 | 4 | 66.67% | 8 | 2 | 75.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 43 | 26 | 43 | 17 | 33 | 16 | 25.0% | 7.9% | 91.8% | 99.7 | DULL | |
2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 1 | 2 | 0.500 | 5 | 7 | 12 | 0 | 0 | 1 | 2 | 2 | 0 | 67 | 22 | 28 | 17 | 0 | 63 | 19 | 12 | 37 | 8 | 1 | 12.50% | 6 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 46 | 28 | 39 | 16 | 34 | 17 | 50.0% | 7.5% | 93.7% | 101.1 | DULL | |
3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 2 | 2 | 1.000 | 3 | 5 | 8 | 0 | 0 | 0 | 2 | 1 | 0 | 37 | 9 | 11 | 17 | 0 | 29 | 9 | 12 | 16 | 3 | 1 | 33.33% | 6 | 1 | 83.33% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 21 | 12 | 22 | 9 | 16 | 8 | 100.0% | 8.1% | 96.6% | 104.7 | DULL | |
4 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 9 | -3 | 2 | 0.333 | 6 | 9 | 15 | 0 | 0 | 2 | 2 | 2 | 0 | 92 | 22 | 31 | 39 | 0 | 95 | 34 | 20 | 53 | 16 | 1 | 6.25% | 12 | 2 | 83.33% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 65 | 37 | 63 | 26 | 50 | 26 | 41.7% | 6.5% | 90.5% | 97.0 | Unlucky | |
5 | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 9 | 8 | 1 | 4 | 0.667 | 9 | 13 | 22 | 0 | 0 | 4 | 2 | 2 | 1 | 91 | 32 | 35 | 22 | 2 | 99 | 40 | 6 | 52 | 10 | 1 | 10.00% | 3 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 66 | 39 | 66 | 24 | 51 | 26 | 50.0% | 9.9% | 91.9% | 101.8 | LUCKY | |
6 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | -1 | 0 | 0.000 | 1 | 2 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 24 | 13 | 8 | 3 | 0 | 22 | 3 | 6 | 10 | 4 | 0 | 0.00% | 3 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 20 | 11 | 20 | 9 | 18 | 9 | 33.3% | 4.2% | 90.9% | 95.1 | Unlucky | |
7 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | -2 | 0 | 0.000 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 24 | 8 | 8 | 8 | 0 | 27 | 5 | 6 | 23 | 5 | 1 | 20.00% | 3 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 20 | 10 | 20 | 9 | 19 | 10 | 0.0% | 4.2% | 88.9% | 93.1 | Unlucky | |
8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 3 | 2 | 2 | 1.000 | 5 | 7 | 12 | 0 | 0 | 1 | 2 | 2 | 0 | 39 | 6 | 14 | 19 | 0 | 36 | 13 | 2 | 19 | 5 | 3 | 60.00% | 1 | 1 | 0.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 22 | 14 | 21 | 8 | 16 | 8 | 50.0% | 12.8% | 91.7% | 104.5 | LUCKY | |
9 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 2 | 2 | 1.000 | 3 | 5 | 8 | 0 | 0 | 0 | 3 | 0 | 0 | 23 | 8 | 10 | 5 | 0 | 30 | 11 | 6 | 19 | 1 | 1 | 100.00% | 3 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 19 | 11 | 22 | 9 | 17 | 7 | 66.7% | 13.0% | 96.7% | 109.7 | LUCKY | |
10 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 8 | -4 | 0 | 0.000 | 4 | 6 | 10 | 1 | 0 | 3 | 0 | 1 | 0 | 52 | 25 | 15 | 12 | 0 | 65 | 19 | 29 | 47 | 5 | 0 | 0.00% | 8 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 40 | 21 | 44 | 17 | 35 | 18 | 33.3% | 7.7% | 87.7% | 95.4 | Unlucky | |
11 | 5 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 18 | 7 | 11 | 10 | 1.000 | 18 | 26 | 44 | 0 | 0 | 5 | 7 | 5 | 1 | 153 | 43 | 63 | 44 | 3 | 159 | 56 | 24 | 88 | 21 | 3 | 14.29% | 12 | 1 | 91.67% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 110 | 64 | 104 | 42 | 86 | 45 | 71.4% | 11.8% | 95.6% | 107.4 | LUCKY | |
12 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 11 | -7 | 0 | 0.000 | 4 | 6 | 10 | 0 | 0 | 2 | 2 | 0 | 0 | 51 | 20 | 16 | 15 | 0 | 68 | 28 | 10 | 31 | 3 | 1 | 33.33% | 5 | 1 | 80.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 40 | 22 | 44 | 17 | 34 | 17 | 23.1% | 7.8% | 83.8% | 91.7 | Unlucky | |
13 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 2 | 2 | 1.000 | 4 | 6 | 10 | 0 | 0 | 0 | 3 | 1 | 0 | 27 | 10 | 14 | 3 | 0 | 25 | 5 | 12 | 15 | 4 | 1 | 25.00% | 6 | 1 | 83.33% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 19 | 10 | 21 | 10 | 19 | 9 | 75.0% | 14.8% | 92.0% | 106.8 | LUCKY | |
14 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 3 | 7 | 6 | 1.000 | 10 | 18 | 28 | 0 | 0 | 3 | 3 | 4 | 0 | 89 | 19 | 38 | 32 | 0 | 90 | 40 | 24 | 51 | 8 | 2 | 25.00% | 12 | 0 | 100.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 66 | 40 | 62 | 23 | 50 | 26 | 72.7% | 11.2% | 96.7% | 107.9 | LUCKY | |
15 | 5 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 10 | 12 | -2 | 5 | 0.500 | 10 | 18 | 28 | 0 | 1 | 4 | 4 | 2 | 0 | 144 | 44 | 56 | 43 | 4 | 115 | 44 | 30 | 112 | 22 | 5 | 22.73% | 15 | 3 | 80.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 110 | 60 | 96 | 48 | 97 | 48 | 35.7% | 6.9% | 89.6% | 96.5 | Unlucky | |
16 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 4 | 2 | 1.000 | 5 | 8 | 13 | 0 | 0 | 0 | 3 | 2 | 0 | 29 | 15 | 9 | 5 | 0 | 30 | 16 | 0 | 16 | 1 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 19 | 11 | 22 | 8 | 18 | 10 | 83.3% | 17.2% | 96.7% | 113.9 | LUCKY | |
17 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 9 | -1 | 4 | 0.667 | 8 | 13 | 21 | 0 | 0 | 1 | 3 | 4 | 0 | 87 | 30 | 24 | 33 | 0 | 94 | 30 | 14 | 42 | 7 | 1 | 14.29% | 7 | 1 | 85.71% | 1 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 63 | 37 | 67 | 25 | 49 | 25 | 46.7% | 9.2% | 90.4% | 99.6 | FUN | |
_Vs Division | 17 | 12 | 3 | 0 | 1 | 0 | 0 | 1 | 51 | 32 | 19 | 27 | 0.794 | 51 | 83 | 134 | 0 | 1 | 13 | 20 | 17 | 1 | 502 | 151 | 190 | 157 | 7 | 488 | 186 | 92 | 309 | 59 | 11 | 18.64% | 46 | 5 | 89.13% | 1 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 371 | 213 | 353 | 149 | 301 | 156 | 59.7% | 10.2% | 93.4% | 103.6 | LUCKY | |
_Vs Conference | 27 | 16 | 8 | 0 | 2 | 0 | 0 | 1 | 80 | 65 | 15 | 37 | 0.685 | 80 | 126 | 206 | 1 | 1 | 23 | 32 | 23 | 2 | 785 | 252 | 294 | 233 | 9 | 811 | 302 | 157 | 492 | 87 | 18 | 20.69% | 72 | 8 | 88.89% | 1 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 579 | 333 | 574 | 236 | 476 | 244 | 52.1% | 10.2% | 92.0% | 102.2 | LUCKY | |
_Since Last GM Reset | 37 | 20 | 14 | 0 | 2 | 0 | 0 | 1 | 101 | 89 | 12 | 45 | 0.608 | 101 | 161 | 262 | 1 | 1 | 27 | 40 | 32 | 2 | 1092 | 340 | 403 | 343 | 9 | 1108 | 396 | 229 | 667 | 129 | 26 | 20.16% | 110 | 13 | 88.18% | 1 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 797 | 458 | 783 | 325 | 649 | 333 | 49.7% | 9.2% | 92.0% | 101.2 | LUCKY | |
Total | 37 | 20 | 14 | 0 | 2 | 0 | 0 | 1 | 101 | 89 | 12 | 45 | 0.608 | 101 | 161 | 262 | 1 | 1 | 27 | 40 | 32 | 2 | 1092 | 340 | 403 | 343 | 9 | 1108 | 396 | 229 | 667 | 129 | 26 | 20.16% | 110 | 13 | 88.18% | 1 | 426 | 815 | 52.27% | 412 | 896 | 45.98% | 260 | 502 | 51.79% | 797 | 458 | 783 | 325 | 649 | 333 | 49.7% | 9.2% | 92.0% | 101.2 | LUCKY |
Puck Time | |
---|---|
Offensive Zone | 21 |
Neutral Zone | 17 |
Defensive Zone | 21 |
Puck Time | |
---|---|
Offensive Zone Start | 815 |
Neutral Zone Start | 502 |
Defensive Zone Start | 896 |
Puck Time | |
---|---|
With Puck | 30 |
Without Puck | 30 |
Faceoffs | |
---|---|
Faceoffs Won | 1098 |
Faceoffs Lost | 1115 |
Team Average Shots after | League Average Shots after | |
---|---|---|
1st Period | 9.2 | 9.57 |
2nd Period | 20.1 | 20.31 |
3rd Period | 29.4 | 30.68 |
Overtime | 29.6 | 31.4 |
Goals in | Team Average Goals after | League Average Goals after |
---|---|---|
1st Period | 0.7 | 0.64 |
2nd Period | 1.8 | 1.65 |
3rd Period | 2.7 | 2.67 |
Overtime | 2.7 | 2.83 |
Even Strenght Goal | 73 |
---|---|
PP Goal | 26 |
PK Goal | 1 |
Empty Net Goal | 1 |
Home | Away | |
---|---|---|
Win | 13 | 9 |
Lost | 4 | 10 |
Overtime Lost | 1 | 0 |
PP Attempt | 129 |
---|---|
PP Goal | 26 |
PK Attempt | 110 |
PK Goal Against | 13 |
Home | |
---|---|
Shots For | 29.5 |
Shots Against | 29.9 |
Goals For | 2.7 |
Goals Against | 2.4 |
Hits | 18.0 |
Shots Blocked | 10.7 |
Pim | 6.2 |
Projected Total Cap Hit | 86,017,577$ |
Projected Cap Space | 3,982,423$ |
Retains And Buyout Cap Hit | 2,500,000$ |
Salary Cap To Date | 38,572,976$ |
Players In Salary Cap | 21 |
LTIR Players | 0 |
Player Name | Pos | Age | Cap Hit | 2018-2019 | 2019-2020 | 2020-2021 | 2021-2022 | 2022-2023 | 2023-2024 | 2024-2025 | 2025-2026 |
---|---|---|---|---|---|---|---|---|---|---|---|
Andrei Vasilevskiy | D | 29 | 7,500,000$ | 7,500,000$ | |||||||
Christian Dvorak ![]() | C | 27 | 1,500,000$ | 1,500,000$ | 1,500,000$ | ||||||
Christian Fischer | RW | 26 | 1,000,000$ | 1,000,000$ | 1,000,000$ | ||||||
Danny DeKeyser ![]() | D | 33 | 1,750,000$ | 1,750,000$ | 1,750,000$ | 1,750,000$ | |||||
Evgeny Kuznetsov | C | 31 | 5,250,000$ | 5,250,000$ | |||||||
Jake McCabe | D | 29 | 4,000,000$ | 4,000,000$ | 4,000,000$ | ||||||
Jonathan Huberdeau | LW | 30 | 9,000,000$ | 9,000,000$ | |||||||
Jonathon Merrill ![]() | D | 31 | 2,275,000$ | 2,275,000$ | 2,275,000$ | 2,275,000$ | |||||
Kirill Kaprizov | C/LW | 26 | 9,000,000$ | 9,000,000$ | |||||||
Kris Letang | D | 36 | 7,000,000$ | 7,000,000$ | 7,000,000$ | 7,000,000$ | 7,000,000$ | ||||
Nick Bjugstad ![]() | C/RW | 31 | 1,250,000$ | 1,250,000$ | 1,250,000$ | ||||||
Nolan Foote ![]() | LW | 22 | 1,500,000$ | 1,500,000$ | 1,500,000$ | 1,500,000$ | 1,500,000$ | ||||
Peyton Krebs | C/LW | 22 | 3,100,000$ | 3,100,000$ | 3,100,000$ | 3,100,000$ | 3,100,000$ | ||||
Radek Faksa ![]() | C/LW | 29 | 2,250,000$ | 2,250,000$ | 2,250,000$ | ||||||
Rasmus Ristolainen | D | 28 | 4,500,000$ | 4,500,000$ | 4,500,000$ | 4,500,000$ | 4,500,000$ | ||||
Sebastian Aho | C/LW | 26 | 8,400,000$ | 8,400,000$ | |||||||
Teuvo Teravainen | LW/RW | 29 | 4,500,000$ | 4,500,000$ | |||||||
Travis Sanheim ![]() | D | 27 | 2,250,000$ | 2,250,000$ | 2,250,000$ | 2,250,000$ | |||||
Tyler Bertuzzi ![]() | LW/RW | 28 | 4,750,000$ | 4,750,000$ | 4,750,000$ | 4,750,000$ | |||||
Ukko-Pekka Luukkonen ![]() | D | 24 | 2,500,000$ | 2,500,000$ | 2,500,000$ | 2,500,000$ | 2,500,000$ | ||||
Wyatt Johnston ![]() | C | 20 | 925,000$ | 925,000$ | 925,000$ |
Forward Lines | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
| |||||
|
|
| |||||
|
|
|
Defensive Pairings | |||||||
---|---|---|---|---|---|---|---|
|
| ||||||
|
| ||||||
|
|
1st Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
2nd Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
Goalies | |||||||
---|---|---|---|---|---|---|---|
|
|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Prospect | Team Name | Draft Year | Overall Pick | Information | Lien |
---|---|---|---|---|---|
Anton Wahlberg | 8 | 24 | |||
Ilya Fedotov | 4 | 37 | |||
Isaiah George | 6 | 62 | |||
Josh Davies | 6 | 92 | |||
Mason Beaupit | 6 | 68 | |||
Maximillian Kilpinen | 7 | 74 | |||
Paul Ludwinski | 7 | 26 | |||
Shai Buium | 5 | 27 | |||
Topi Ronni | 7 | 50 | |||
Ty Mueller | 8 | 77 | |||
Zam Plante | 6 | 86 |
Date | Matchup | Result | Detail | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2023-09-27 | @ | Lightning2,Blue Jackets0 | RECAP | |||||||||||
2023-09-28 | @ | Blue Jackets2,Avalanche1 | RECAP | |||||||||||
2023-09-30 | @ | Blue Jackets2,Rangers1 | RECAP | |||||||||||
2023-10-02 | @ | Flyers1,Blue Jackets3 | RECAP | |||||||||||
2023-10-04 | @ | Blue Jackets5,Panthers1 | RECAP | |||||||||||
2023-10-06 | @ | Rangers1,Blue Jackets6 | RECAP | |||||||||||
2023-10-08 | @ | Blue Jackets2,Rangers1 (OT) | RECAP | |||||||||||
2023-10-10 | @ | Canadiens3,Blue Jackets5 | RECAP | |||||||||||
2023-10-12 | @ | Blue Jackets3,Lightning2 | RECAP | |||||||||||
2023-10-14 | @ | Blue Jackets1,Avalanche3 | RECAP | |||||||||||
2023-10-16 | @ | Lightning3,Blue Jackets2 (SO) | RECAP | |||||||||||
2023-10-18 | @ | Rangers2,Blue Jackets4 | RECAP | |||||||||||
2023-10-20 | @ | Blue Jackets1,Sabres4 | RECAP | |||||||||||
2023-10-22 | @ | Avalanche5,Blue Jackets3 | RECAP | |||||||||||
2023-10-24 | @ | Blue Jackets2,Maple Leafs4 | RECAP | |||||||||||
2023-10-26 | @ | Blue Jackets4,Rangers2 | RECAP | |||||||||||
2023-10-28 | @ | Maple Leafs4,Blue Jackets2 | RECAP | |||||||||||
2023-10-30 | @ | Red Wings2,Blue Jackets4 | RECAP | |||||||||||
2023-10-31 | @ | Blue Jackets1,Oilers2 | RECAP | |||||||||||
2023-11-02 | @ | Lightning5,Blue Jackets2 | RECAP | |||||||||||
2023-11-03 | @ | Blue Jackets4,Devils3 | RECAP | |||||||||||
2023-11-05 | @ | Blue Jackets5,Flyers1 | RECAP | |||||||||||
2023-11-07 | @ | Flyers1,Blue Jackets2 | RECAP | |||||||||||
2023-11-09 | @ | Blue Jackets2,Flames3 | RECAP | |||||||||||
2023-11-11 | @ | Bruins1,Blue Jackets2 (OT) | RECAP | |||||||||||
2023-11-13 | @ | Devils2,Blue Jackets3 | RECAP | |||||||||||
2023-11-15 | @ | Blue Jackets1,Coyotes2 | RECAP | |||||||||||
2023-11-17 | @ | Oilers2,Blue Jackets4 | RECAP | |||||||||||
2023-11-19 | @ | Flames2,Blue Jackets3 | RECAP | |||||||||||
2023-11-21 | @ | Blue Jackets1,Devils4 | RECAP | |||||||||||
2023-11-23 | @ | Blue Jackets3,Sabres7 | RECAP | |||||||||||
2023-11-24 | @ | Blue Jackets3,Canucks1 | RECAP | |||||||||||
2023-11-26 | @ | Senators1,Blue Jackets3 | RECAP | |||||||||||
2023-11-28 | @ | Lightning0,Blue Jackets3 | RECAP | |||||||||||
2023-11-30 | @ | Blue Jackets1,Ducks3 | RECAP | |||||||||||
2023-12-01 | @ | Bruins2,Blue Jackets6 | RECAP | |||||||||||
2023-12-03 | @ | Blue Jackets1,Bruins5 | RECAP | |||||||||||
2023-12-04 | @ | |||||||||||||
2023-12-06 | @ | |||||||||||||
2023-12-08 | @ | |||||||||||||
2023-12-09 | @ | |||||||||||||
2023-12-11 | @ | |||||||||||||
2023-12-13 | @ | |||||||||||||
2023-12-15 | @ | |||||||||||||
2023-12-17 | @ | |||||||||||||
2023-12-18 | @ | |||||||||||||
2023-12-20 | @ | |||||||||||||
2023-12-23 | @ | |||||||||||||
2023-12-25 | @ | |||||||||||||
2023-12-26 | @ | |||||||||||||
2023-12-28 | @ | |||||||||||||
2023-12-29 | @ | |||||||||||||
2023-12-31 | @ | |||||||||||||
2024-01-01 | @ | |||||||||||||
2024-01-02 | @ | |||||||||||||
2024-01-05 | @ | |||||||||||||
2024-01-07 | @ | |||||||||||||
2024-01-08 | @ | |||||||||||||
2024-01-09 | @ | |||||||||||||
2024-01-10 | @ | |||||||||||||
2024-01-12 | @ | |||||||||||||
2024-01-14 | @ | |||||||||||||
2024-01-16 | @ | |||||||||||||
2024-01-17 | @ | |||||||||||||
2024-01-19 | @ | |||||||||||||
2024-01-20 | @ | |||||||||||||
Trade Deadline --- Trades cant be done after this day is simulated! | ||||||||||||||
2024-01-22 | @ | |||||||||||||
2024-01-24 | @ | |||||||||||||
2024-01-26 | @ | |||||||||||||
2024-01-27 | @ | |||||||||||||
2024-01-28 | @ | |||||||||||||
2024-01-30 | @ | |||||||||||||
2024-02-01 | @ | |||||||||||||
2024-02-03 | @ | |||||||||||||
2024-02-04 | @ | |||||||||||||
2024-02-06 | @ | |||||||||||||
2024-02-09 | @ | |||||||||||||
2024-02-10 | @ | |||||||||||||
2024-02-12 | @ | |||||||||||||
2024-02-14 | @ | |||||||||||||
2024-02-15 | @ | |||||||||||||
2024-02-18 | @ |
Salary Cap | |||
---|---|---|---|
Players Total Salaries | Retained Salary | Total Cap Hit | Estimated Cap Space |
84,200,000$ | 2,500,000$ | 86,017,577$ | 3,982,423$ |
Arena | Goal Horn | About us | |
---|---|---|---|
![]() | Name | Nationwide Arena | |
City | Columbus | ||
Capacity | 18000 | ||
Season Ticket Holders | 50% |
Arena Capacity - Ticket Price Attendance - % | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Arena Capacity | 6000 | 5000 | 2000 | 4000 | 1000 |
Ticket Price | 300$ | 150$ | 100$ | 75$ | 400$ |
Attendance | 85235 | 72904 | 28907 | 57652 | 17301 |
Attendance PCT | 78.92% | 81.00% | 80.30% | 80.07% | 96.12% |
Income | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Home Games Left | Average Attendance - % | Average Income per Game | Year to Date Revenue | Arena Capacity | Team Popularity |
23 | 14556 - 80.86% | 4,191,958$ | 75,455,239$ | 18000 | 100 |
Expenses | |||
---|---|---|---|
Players Total Salaries | Players Total Average Salaries | Coaches Salaries | Special Salary Cap Value |
84,200,000$ | 84,200,000$ | 0$ | 2,500,000$ |
Year To Date Expenses | Salary Cap Per Days | Salary Cap To Date | Luxury Taxe Total |
---|---|---|---|
39,770,619$ | 568,919$ | 38,572,976$ | 0$ |
Estimate | |||
---|---|---|---|
Estimated Season Revenue | Remaining Season Days | Expenses Per Days | Estimated Season Expenses |
96,415,028$ | 79 | 585,811$ | 46,279,069$ |
Team Total Estimate | |||
---|---|---|---|
Estimated Season Expenses | Estimated Season Salary Cap | Current Bank Account | Projected Bank Account |
47,754,697$ | 86,017,577$ | 801,080,486$ | 857,969,975$ |
Left Wing | Center | Right Wing | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
Defense #1 | Defense #2 | Goalie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
Year | Round 1 | Round 2 | Round 3 | Round 4 |
---|---|---|---|---|
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 |
|