Full Scoreboard ยป |
Florida Panthers 0-0-0, 0pts · 10th in Eastern Conference |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Player | # | POS | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | C | 100.00 | 24 | 1 | 99 | 85 | 83 | 96 | 98 | 90 | 99 | 99 | 99 | 74 | 85 | 83 | 84 | 72 | 50 | 83 | 27 | 15,900,000$/4yrs | |||
![]() | 0 | LW | 100.00 | 43 | 26 | 99 | 81 | 77 | 87 | 95 | 97 | 74 | 86 | 92 | 56 | 81 | 49 | 49 | 84 | 50 | 76 | 21 | 7,000,000$/4yrs | |||
![]() | 0 | C | 100.00 | 50 | 13 | 75 | 84 | 75 | 95 | 90 | 84 | 81 | 92 | 77 | 41 | 64 | 81 | 88 | 80 | 50 | 74 | 36 | 4,500,000$/2yrs | |||
![]() | 0 | C/LW | 100.00 | 41 | 1 | 99 | 86 | 74 | 88 | 99 | 79 | 92 | 92 | 68 | 57 | 25 | 83 | 85 | 55 | 50 | 74 | 28 | 3,500,000$/2yrs | |||
![]() | 77 | RW | 100.00 | 63 | 5 | 94 | 79 | 71 | 94 | 89 | 86 | 49 | 76 | 81 | 51 | 91 | 76 | 80 | 81 | 50 | 73 | 36 | 3,500,000$/2yrs | |||
![]() | 0 | C | 100.00 | 22 | 1 | 99 | 84 | 78 | 86 | 92 | 80 | 84 | 83 | 78 | 49 | 25 | 76 | 76 | 59 | 50 | 72 | 25 | 2,600,000$/1yrs | |||
![]() | 0 | LW/RW | 100.00 | 61 | 14 | 94 | 82 | 72 | 84 | 99 | 72 | 30 | 72 | 73 | 69 | 38 | 72 | 76 | 76 | 50 | 71 | 33 | 3,500,000$/1yrs | |||
![]() | 0 | C/LW/RW | 100.00 | 68 | 40 | 94 | 80 | 73 | 90 | 90 | 74 | 65 | 64 | 68 | 65 | 25 | 88 | 90 | 68 | 50 | 71 | 35 | 1,750,000$/3yrs | |||
![]() | 0 | LW/RW | 100.00 | 41 | 1 | 99 | 82 | 72 | 69 | 85 | 78 | 27 | 82 | 84 | 53 | 75 | 73 | 74 | 55 | 50 | 71 | 28 | 2,500,000$/1yrs | |||
![]() | 0 | LW | 100.00 | 62 | 38 | 75 | 72 | 79 | 84 | 95 | 82 | 73 | 68 | 81 | 64 | 81 | 43 | 43 | 87 | 50 | 70 | 21 | 925,000$/1yrs | |||
![]() | 0 | C/LW/RW | 100.00 | 66 | 5 | 92 | 83 | 68 | 85 | 97 | 67 | 33 | 67 | 62 | 66 | 25 | 76 | 78 | 62 | 50 | 68 | 30 | 1,500,000$/3yrs | |||
![]() | 0 | LW/RW | 100.00 | 43 | 1 | 99 | 71 | 70 | 70 | 79 | 62 | 60 | 61 | 64 | 59 | 25 | 66 | 66 | 57 | 50 | 62 | 26 | 800,000$/1yrs | |||
![]() | 0 | D | 100.00 | 58 | 14 | 93 | 82 | 81 | 99 | 98 | 71 | 25 | 72 | 50 | 91 | 25 | 68 | 70 | 68 | 50 | 76 | 32 | 7,000,000$/3yrs | |||
![]() | 0 | D | 100.00 | 81 | 7 | 94 | 81 | 82 | 99 | 90 | 64 | 25 | 58 | 50 | 82 | 25 | 79 | 80 | 57 | 50 | 75 | 30 | 6,250,000$/3yrs | |||
![]() | 0 | D | 100.00 | 70 | 24 | 94 | 84 | 75 | 79 | 89 | 80 | 25 | 71 | 60 | 82 | 25 | 63 | 64 | 70 | 50 | 74 | 23 | 4,150,000$/3yrs | |||
![]() | 0 | D | 100.00 | 69 | 6 | 99 | 81 | 76 | 85 | 85 | 81 | 25 | 68 | 58 | 81 | 25 | 76 | 77 | 71 | 50 | 74 | 35 | 4,500,000$/3yrs | |||
![]() | 0 | D | 100.00 | 24 | 1 | 99 | 86 | 75 | 95 | 91 | 86 | 25 | 72 | 64 | 80 | 75 | 71 | 73 | 56 | 50 | 73 | 27 | 5,000,000$/1yrs | |||
![]() | 0 | D | 100.00 | 60 | 27 | 80 | 78 | 78 | 67 | 85 | 78 | 22 | 81 | 69 | 87 | 59 | 56 | 56 | 76 | 50 | 72 | 21 | 4,000,000$/4yrs | |||
Scratches | ||||||||||||||||||||||||||
TEAM AVERAGE | 100.00 | 53 | 13 | 93 | 81 | 76 | 86 | 91 | 78 | 51 | 76 | 71 | 67 | 49 | 71 | 73 | 69 | 50 | 73 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Goalie | # | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | AGE | CONTRACT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | 100.00 | 76 | 92 | 99 | 71 | 82 | 88 | 87 | 85 | 84 | 81 | 85 | 73 | 74 | 78 | 50 | 80 | 34 | 3,500,000$/3yrs |
![]() | 0 | 100.00 | 76 | 75 | 86 | 66 | 76 | 85 | 72 | 86 | 96 | 74 | 75 | 65 | 65 | 55 | 50 | 75 | 27 | 1,000,000$/2yrs |
Scratches | ||||||||||||||||||||
![]() | 0 | 100.00 | 69 | 81 | 94 | 82 | 76 | 78 | 76 | 80 | 75 | 73 | 79 | 65 | 66 | 62 | 50 | 74 | 35 | 800,000$/3yrs |
TEAM AVERAGE | 100.00 | 74 | 83 | 93 | 73 | 78 | 84 | 78 | 84 | 85 | 76 | 80 | 68 | 68 | 65 | 50 | 76 |
Coaches Name | PH | DF | OF | PD | EX | LD | PO | CNT | Age | Contract | Salary |
---|---|---|---|---|---|---|---|---|---|---|---|
Todd Richards | 66 | 67 | 76 | 43 | 68 | 70 | 51 | USA | 56 | 5 | 2,500,000$ |
General Manager | Shane Powell |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Player Name | Team Name | # | POS | GP | G | A | P | +/- | PIM | PIM5 | HIT | SHT | OSB | OSM | SHT% | SB | AMG | PPG | PPA | PPP | PPM | PKG | PKA | PKP | PKM | GW | GT | FO% | FOT | GA | TA | EG | HT | P/20 | PSG | PSS |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Goalie Name | Team Name | GP | W | L | OTL | PCT | GAA | MP | PIM | SO | GA | SA | SAR | A | EG | PS % | PSA | ST | BG | S1 | S2 | S3 |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | VS Team | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT | GF% | SH% | SV% | PDO | PDOBRK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0 | 0.0% | 0.0% | 0.0% | 0.0 | Unlucky |
Puck Time | |
---|---|
Offensive Zone | 0 |
Neutral Zone | 0 |
Defensive Zone | 0 |
Puck Time | |
---|---|
Offensive Zone Start | 0 |
Neutral Zone Start | 0 |
Defensive Zone Start | 0 |
Puck Time | |
---|---|
With Puck | 0 |
Without Puck | 0 |
Faceoffs | |
---|---|
Faceoffs Won | 0 |
Faceoffs Lost | 0 |
Team Average Shots after | League Average Shots after | |
---|---|---|
1st Period | 0.0 | 9.57 |
2nd Period | 0.0 | 20.31 |
3rd Period | 0.0 | 30.68 |
Overtime | 0.0 | 31.4 |
Goals in | Team Average Goals after | League Average Goals after |
---|---|---|
1st Period | 0.0 | 0.64 |
2nd Period | 0.0 | 1.65 |
3rd Period | 0.0 | 2.67 |
Overtime | 0.0 | 2.83 |
Even Strenght Goal | 0 |
---|---|
PP Goal | 0 |
PK Goal | 0 |
Empty Net Goal | 0 |
Home | Away | |
---|---|---|
Win | 0 | 0 |
Lost | 0 | 0 |
Overtime Lost | 0 | 0 |
PP Attempt | 0 |
---|---|
PP Goal | 0 |
PK Attempt | 0 |
PK Goal Against | 0 |
Home | |
---|---|
Shots For | 0.0 |
Shots Against | 0.0 |
Goals For | 0.0 |
Goals Against | 0.0 |
Hits | 0.0 |
Shots Blocked | 0.0 |
Pim | 0.0 |
Projected Total Cap Hit | 0$ |
Projected Cap Space | 90,000,000$ |
Retains And Buyout Cap Hit | -1,250,000$ |
Salary Cap To Date | 0$ |
Players In Salary Cap | 23 |
LTIR Players | 0 |
Player Name | Pos | Age | Cap Hit | 2018-2019 | 2019-2020 | 2020-2021 | 2021-2022 | 2022-2023 | 2023-2024 | 2024-2025 | 2025-2026 |
---|---|---|---|---|---|---|---|---|---|---|---|
Adam Larsson | D | 30 | 6,250,000$ | 6,250,000$ | 6,250,000$ | 6,250,000$ | |||||
Aleksander Barkov | C | 27 | 15,900,000$ | 15,900,000$ | 15,900,000$ | 15,900,000$ | 15,900,000$ | ||||
Alex Killorn | LW/RW | 33 | 3,500,000$ | 3,500,000$ | |||||||
Alexandar Georgiev ![]() | C/RW | 27 | 1,000,000$ | 1,000,000$ | 1,000,000$ | ||||||
Alexandre Fortin ![]() | LW/RW | 26 | 800,000$ | 800,000$ | |||||||
Andreas Johnsson | LW/RW | 28 | 2,500,000$ | 2,500,000$ | |||||||
Arthur Kaliyev | LW | 21 | 7,000,000$ | 7,000,000$ | 7,000,000$ | 7,000,000$ | 7,000,000$ | ||||
Cam Talbot ![]() | D | 35 | 800,000$ | 800,000$ | 800,000$ | 800,000$ | |||||
Chris Tierney | C/LW | 28 | 3,500,000$ | 3,500,000$ | 3,500,000$ | ||||||
Dylan Strome ![]() | C | 25 | 2,600,000$ | 2,600,000$ | |||||||
Evan Bouchard | D | 21 | 4,000,000$ | 4,000,000$ | 4,000,000$ | 4,000,000$ | 4,000,000$ | ||||
Evgeni Malkin | C | 36 | 4,500,000$ | 4,500,000$ | 4,500,000$ | ||||||
Jeff Petry | D | 35 | 4,500,000$ | 4,500,000$ | 4,500,000$ | 4,500,000$ | |||||
Mattias Ekholm | D | 32 | 7,000,000$ | 7,000,000$ | 7,000,000$ | 7,000,000$ | |||||
Nick Foligno ![]() | C/LW/RW | 35 | 1,750,000$ | 1,750,000$ | 1,750,000$ | 1,750,000$ | |||||
Noah Dobson ![]() | D | 23 | 4,150,000$ | 4,150,000$ | 4,150,000$ | 4,150,000$ | |||||
Sergei Bobrovsky | C/RW | 34 | 3,500,000$ | 3,500,000$ | 3,500,000$ | 3,500,000$ | |||||
Shea Theodore ![]() | D | 27 | 5,000,000$ | 5,000,000$ | |||||||
T.J. Oshie | RW | 36 | 3,500,000$ | 3,500,000$ | 3,500,000$ | ||||||
Vladislav Namestnikov ![]() | C/LW/RW | 30 | 1,500,000$ | 1,500,000$ | 1,500,000$ | 1,500,000$ | |||||
Will Cuylle ![]() | LW | 21 | 925,000$ | 925,000$ |
Forward Lines | |||||||
---|---|---|---|---|---|---|---|
| |||||||
|
| ||||||
|
Defensive Pairings | |||||||
---|---|---|---|---|---|---|---|
| |||||||
| |||||||
|
|
1st Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
2nd Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
| ||||||
|
Goalies | |||||||
---|---|---|---|---|---|---|---|
|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Prospect | Team Name | Draft Year | Overall Pick | Information | Lien |
---|---|---|---|---|---|
Alex Pharand | 8 | 68 | |||
Carter Sotheran | 8 | 61 | |||
Chase Stillman | 4 | 23 | |||
Evan Nause | 5 | 25 | |||
Fabian Wagner | 7 | 92 | |||
Jack Devine | 7 | 96 | |||
Jake Richard | 6 | 88 | |||
Jakub Vondras | 7 | 72 | |||
Jimmy Clark | 8 | 62 | |||
Jordan Gustafson | 7 | 48 | |||
Luke Coughlin | 8 | 85 | |||
Mattias Havelid | 7 | 35 | |||
Oliver Johansson | 5 | 48 | |||
Oliver Moore | 8 | 13 | |||
Oskar Olausson | 5 | 20 | |||
Sandis Vilmanis | 7 | 78 | |||
Scott Morrow | 5 | 24 | |||
Talyn Boyko | 5 | 72 | |||
Trey Augustine | 8 | 37 | |||
Tyler Brennan | 6 | 64 |
Date | Matchup | Result | Detail | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2023-09-24 | @ | |||||||||||||
2023-09-25 | @ | |||||||||||||
2023-09-26 | @ | |||||||||||||
2023-09-28 | @ | |||||||||||||
2023-09-29 | @ | |||||||||||||
2023-09-30 | @ | |||||||||||||
2023-10-03 | @ | |||||||||||||
Trade Deadline --- Trades cant be done after this day is simulated! | ||||||||||||||
2023-10-06 | @ | |||||||||||||
2023-10-07 | @ | |||||||||||||
2023-10-08 | @ |
Salary Cap | |||
---|---|---|---|
Players Total Salaries | Retained Salary | Total Cap Hit | Estimated Cap Space |
91,174,999$ | -1,250,000$ | 0$ | 90,000,000$ |
Arena | Goal Horn | About us | |
---|---|---|---|
![]() | Name | FLA Live Arena | |
City | Florida | ||
Capacity | 18000 | ||
Season Ticket Holders | 50% |
Arena Capacity - Ticket Price Attendance - % | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Arena Capacity | 6000 | 5000 | 2000 | 4000 | 1000 |
Ticket Price | 300$ | 150$ | 100$ | 75$ | 400$ |
Attendance | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Attendance PCT | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Income | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Home Games Left | Average Attendance - % | Average Income per Game | Year to Date Revenue | Arena Capacity | Team Popularity |
5 | 0 - 0.00% | 0$ | 0$ | 18000 | 100 |
Expenses | |||
---|---|---|---|
Players Total Salaries | Players Total Average Salaries | Coaches Salaries | Special Salary Cap Value |
91,174,999$ | 91,174,999$ | 0$ | -1,250,000$ |
Year To Date Expenses | Salary Cap Per Days | Salary Cap To Date | Luxury Taxe Total |
---|---|---|---|
0$ | 0$ | 0$ | 0$ |
Estimate | |||
---|---|---|---|
Estimated Season Revenue | Remaining Season Days | Expenses Per Days | Estimated Season Expenses |
0$ | 16 | 0$ | 0$ |
Team Total Estimate | |||
---|---|---|---|
Estimated Season Expenses | Estimated Season Salary Cap | Current Bank Account | Projected Bank Account |
0$ | 0$ | 1,000,028,134$ | 1,000,028,134$ |
Left Wing | Center | Right Wing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
Defense #1 | Defense #2 | Goalie | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
Year | Round 1 | Round 2 | Round 3 | Round 4 |
---|---|---|---|---|
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 |